Fermat’s Last Theorem

fermats last theorem aczel four walls eight windows 1996Fermat’s Last Theorem: Unlocking the Secret of an Ancient Mathematical Problem by Amir D. Aczel, 2/5

In around 1637, Fermat hinted that he had “discovered a truly marvelous proof” that an + bn = cn cannot be true for n>2.  Proving this deceptively simple theory required the contributions of dozens of mathematicians over a span of some 350 years.  Unfortunately, while biographical aspects of the story are competently told, the author is unable or unwilling to explain important mathematical concepts in layman’s terms.  If the following paragraph makes sense to you, then you probably fit the target audience of this little book:

Here, a periodic function could be conceived as having a periodicity both along the real axis and along the imaginary axis.  Poincaré went even further and posited the existence of functions with a wider array of symmetries.  These were functions that remained unchanged when the complex variable z was changed according to f(z)——>f(az+b/cz+d)Here the elements a, b, c, d, arranged as a matrix, formed an algebraic group.  This means that there are infinitely many possible variations.  They all commute with each other and the function f is invariant under this group of transformations.  Poincaré called such weird functions automorphic forms (82).

If, like me, you were completely nonplussed by that description, then the only thing of value you will likely get from this book is a deeper understanding of the fact that concise ≠ comprehensible.

[Why I read it: I came across it while sorting through some of my Dad’s books.]


Your Thoughts

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s